The residues of pesticides and antibiotics have always been a major concern in agriculture and food safety. In order to provide a new method for the rapid detection of organophosphorus pesticides and antibiotics, a novel Cd (II) chain-based zwitterionic metal-organic framework MOF 1 with high sensitivity fluorescence sensing performance was successfully synthesized. A series of researches showed that the water- and pH-stable bifunctional MOF 1 has a great ability to detect phosmet (PSM) and chlortetracycline (CTC) in water through fluorescence quenching effect, with high detection sensitivity, low detection limits (0.0124 mu M and 0.0131 mu M), short response time (40 s) and reusability. Practical application results revealed that MOF 1 could detect PSM and CTC in milk, beef, chicken and egg samples, with satisfactory recoveries (95.2%-103.7%). As a novel fluorescence probe, MOF 1, is known the first case that can detect PSM in animal-derived samples, and the first dual-function material capable of detecting PSM and CTC. Mechanism studies displayed that competitive absorption and photoinduced electron transfer clearly authenticate the high quenching performance of the material.